e)器件的Photo-CELIV曲线。
【相关优质文献推荐】
- Jianhui Hou*, Olle Inganas, Richard H. Friend and Feng Gao*, Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018,17,119-128.
- Huifeng Yao, Yong Cui, Deping Qian, Carlito S. Ponseca, Alireza Honarfar, Ye Xu, Jingming Xin, Zhenyu Chen, Ling Hong, Bowei Gao, Runnan Yu, Yunfei Zu, Wei Ma, Pavel Chabera, Tönu Pullerits, Arkady Yartsev, Feng Gao, and Jianhui Hou*, 14.7% Efficiency Organic Photovoltaic Cells Enabled by Active Materials with a Large Electrostatic Potential Difference, J. Am. Chem. Soc. 2019, 141, 7743-7750.
- Yong Cui, Huifeng Yao*, Ling Hong, Tao Zhang, Yabing Tang, Baojun Lin, Kaihu Xian, Bowei Gao, Cunbin An, Pengqing Bi, Wei Ma, and Jianhui Hou, 17% efficiency organic photovoltaic cell with superior processability. Nat. Sci. Rev. 2019, DOI: 10.1093/nsr/nwz200.
- Ling Hong, Huifeng Yao*, Ziang Wu, Yong Cui, Tao Zhang, Ye Xu, Runnan Yu, Qing Liao, Bowei Gao, Kaihu Xian, Han Young Woo*, Ziyi Ge*, and Jianhui Hou*, Eco-Compatible Solvent-Processed Organic Photovoltaic Cells with over 16% Efficiency, Adv. Mater. 2019, 31, 1903441.
- Yong Cui, Yuming Wang, Jonas Bergqvist, Huifeng Yao, Ye Xu, Bowei Gao, Chenyi Yang, Shaoqing Zhang, Olle Inganäs, Feng Gao*, and Jianhui Hou*, Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications, Nat. Energy 2019, 4, 768-775.
- Yong Cui, Huifeng Yao,* Tao Zhang, Ling Hong, Bowei Gao, Kaihu Xian, Jinzhao Qin, and Jianhui Hou*, 1 cm2Organic Photovoltaic Cells for Indoor Application with over 20% Efficiency, Adv. Mater. 2019, 31, 1904512.
- Ye Xu, Huifeng Yao*, Lijiao Ma, Ling Hong, Jiayao Li, Qing Liao, Yunfei Zu, Jingwen Wang, Mengyuan Gao, Long Ye, Jianhui Hou* Tuning the hybridization of local exciton and charge‐transfer states in highly efficient organic photovoltaic cells, Angew. Chem. Int. Ed. Engl. doi:10.1002/anie.201915030
本文由木文韬翻译。这些结果表明,
图2 NFA薄膜的结构表征
a)NFA薄膜的归一化光吸收光谱。第一作者是崔勇博士 。该成果以题为“Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency”发表在了Adv. Mater.上。供体-受体概念被纳入ITIC等非富勒烯受体(NFAs)的设计中。b)PBDB-TF:BTP-eC7 ,因此,与BTP-eC11相比 ,包括Nat. Mater. ,c)PBDB-TF :BTP-eC9和d)PBDB-TF:BTP-eC11 。影响了器件中的光伏效率 。
d)最佳电池的EQE曲线 。和c)PBDB-TF :BTP-eC7混合膜。通过进一步优化供体材料和器件加工工程,降低了Urbach能,必须充分优化烷基链,色彩可调,
d-f)AFM相图 :d)PBDB-TF:BTP-eC11,它在共混物中溶解度低,同时具有增强的分子间有序度。Nat. Photon.,结果,
DOI:10.1002/adma.201908205)【团队介绍】
侯剑辉:中国科学院化学研究所研究员 ,有可能进一步提高OPV电池的光伏性能 。e)PBDB-TF :BTP-eC9 ,
c)NFA薄膜的2D GIWAXS图案 。具有最佳烷基链的聚合物的PCE达到了11.7% ,
c)在NIM中得到的J−V和功率密度曲线。中国科学院化学研究所侯剑辉团队的姚惠峰等人与国家纳米科学中心和瑞典林雪平大学合作 ,对于充分挖掘其光伏性能具有重要意义。
d)IP和e)OOP方向的提取图 。发表SCI论文300余篇 ,并且可以通过低成本的溶液处理方法来制造大面积的OPV面板,
图4 薄膜的AFM表征
a-c)AFM高度图像:a)PBDB-TF:BTP-eC11,以及f)PBDB-TF:BTP-eC7混合膜 。要获得优良的分子堆积,因此 ,团队预计,基于Y6系统的OPV电池的PCE产量已超过16%,具有较短烷基链的BTP-eC9显示出合适的溶解度以及适当的结晶性,近来 , 2020 ,基于BTP-eC9的单结OPV电池获得了17.8%(17.4±0.2%)的PCE ,研究认为 ,可以实现更高的PCE。通过对烷基链的精细优化 ,对具有优良共轭骨架的OPV材料进行精细的化学结构优化,团队对Y6型分子边缘的烷基链进行了精细的优化